Französische Forschergruppe postuliert Beeinflussung der atlantischen Ozeanzyklen durch Vulkanausbrüche – vergisst dabei aber Sonnenaktivitätsschwankungen zu berücksichtigen

Eigentlich hatten sich schon alle darauf geeinigt, dass Vulkane das Klima maximal drei bis fünf Jahre abkühlen können. Eine Forschergruppe um Didier Swingedouw wollte dies jedoch nicht wahrhaben und dachte sich eine windige Konstruktion aus, die sie in der Fachzeitschrift Nature Communications auch tatsächlich unterbringen konnten. Die Idee: Vulkanausbrüche verändern Ozeanzyklen und wirken so über etliche Jahrzehnte nach. Speziell dachten die Wissenschaftler da an die nordatlantische Ozeanzirkulation (AMOC), die 15 Jahre nach dem Vulkanausbruch schneller werden würde. Nach zehn weiteren Jahren würde sich die Zirkulation dann wieder verlangsamen und nach weiteren 5 Jahren wieder beschleunigen. Alles nachzulesen in einer Pressemitteilung der französischen Forschungsorganisation CNRS vom 30. März 2015:

Volcanic eruptions durably impact North Atlantic climate

Particles emitted during major volcanic eruptions cool the atmosphere due to a ‚parasol‘ effect that reflects sunlight. The direct impact of these particles in the atmosphere is fairly short, lasting two to three years. However, they alter for more than 20 years the North Atlantic Ocean circulation, which connects surface and deep currents and influences the climate in Europe. This is the conclusion of a study by researchers from the CNRS, IRD, CEA and MétéoFrance1 who combined, for the first time, climate simulations, recent oceanographic data, and information from natural climate records. Their findings2 are published in Nature Communications on March 30th [2015; Swingedouw et al.]. […]

The cooling, which only lasts two or three years, then triggers a rearrangement of ocean circulation in the North Atlantic Ocean. Around fifteen years after the beginning of the eruption, the circulation speeds up. It then slows down after twenty-five years, before accelerating again thirty-five years after the phenomenon. Volcanic eruptions thus appear to act on the ocean circulation in the North Atlantic rather like a pacemaker, causing variability over a twenty-year period. The scientists confirmed these results by comparing them with observations of ocean salinity, a key factor for the sinking of water and therefore for ocean circulation. In numerical simulations and modern oceanographic data they detected similar variations in the early 1970s and 1990s connected to the eruption of the Agung volcano.

Using data from Greenland ice cores and observations carried out on bivalve molluscs collected to the north of Iceland and dating back more than 500 years, as well as a simulation of the climate over the last thousand years, the researchers systematically identified acceleration of ocean circulation fifteen years after five volcanic eruptions that took place several hundred years ago. Lastly, the researchers revealed the interference produced by the latest three main eruptions, Agung in 1963, El Chichón in Mexico in 1982, and Pinatubo in 1991, explaining for the first time the recent variability of currents in the North Atlantic ocean. They conclude that a major eruption in the near future could have an impact on the currents in the North Atlantic Ocean — and hence on our ability to predict the variability of the climate in Europe — over several decades. They now hope to consolidate these findings by collecting data from additional sources, especially in paleoclimatology.

Ein neuer Versuch, die Kleine Eiszeit den Vulkanen anzuhängen, obwohl sich der Zusammenhang mit der verringerten Sonnenaktivität überdeutlich anbietet?

Eine Kleinigkeit hatten die Franzosen dann doch übersehen. Es ist nämlich schon seit längerem bekannt, dass die atlantischen Ozeanzyklen, speziell die NAO, von der Sonnenaktivität beeinflusst werden. Wir haben hier im Blog mehrfach über entsprechende Studien berichtet:

Weshalb will der Begriff „Sonne“ in der Studie von Swingedouw und Kollegen einfach nicht fallen? Da hatten es Kollegen aus Dänemark ein Jahr zuvor deutlich besser gemacht. Eine Team um Mads Faurschou Knudsen hatte ebenfalls in Nature Communications ein Paper veröffentlicht, in dem Einflussfaktoren auf die atlantische Ozeanzirkulation beschrieben werden, in diesem Fall die Atlantische Multidekadenoszillation (AMO). Wir hatten seinerzeit über die Studie hier im Blog berichtet. Die Dänen sehen neben vulkanischen Einflüssen auf die AMO auch einen bedeutenden Einfluss von Sonnenaktivitätsschwankungen. Der Prozess könnte mithilfe des UV-Anteils der Sonnenstrahlung ablaufen, der zu Ozonveränderungen in der Stratosphäre führt, was wiederum Windsysteme und Ozeanzyklen beeinflusst. In einer Pressemitteilung der Aarhus University vom April 2014 beschreiben die Autoren ihre Ergebnisse:

Natural fluctuations in the ocean temperature in the North Atlantic have a significant impact on the climate in the northern hemisphere. These fluctuations are the result of a complex dance between the forces of nature, but researchers at Aarhus University can now show that solar activity and the impact of volcanic eruptions have led this dance during the last two centuries.

[…] An attempt to simply explain how external forces such as the Sun and volcanoes can control the climate could sound like this: a stronger Sun heats up the ocean, while the ash from volcanic eruptions shields the Sun and cools down the ocean. However, it is hardly as simple as that. “Fluctuations in ocean temperature have a time lag of about five years in relation to the peaks we can read in the external forces. However, the direct effect of major volcanic eruptions is clearly seen as early as the same year in the mean global atmospheric temperature, i.e. a much shorter delay. The effect we studied is more complex, and it takes time for this effect to spread to the ocean currents,” explains Associate Professor Knudsen.

“An interesting new theory among solar researchers and meteorologists is that the Sun can control climate variations via the very large variations in UV radiation, which are partly seen in connection with changes in sunspot activity during the Sun’s eleven-year cycle. UV radiation heats the stratosphere in particular via increased production of ozone, which can have an impact on wind systems and thereby indirectly on the global ocean currents as well,” says Associate Professor Knudsen. However, he emphasises that researchers have not yet completely understood how a development in the stratosphere can affect the ocean currents on Earth.

“In our previous study of the climate in the North Atlantic region during the last 8,000 years, we were able to show that the temperature of the Atlantic Ocean was presumably not controlled by the Sun’s activity. Here the temperature fluctuated in its own rhythm for long intervals, with warm and cold periods lasting 25–35 years. The prevailing pattern was that this climate fluctuation in the ocean was approximately 30–40% faster than the fluctuation we’d previously observed in solar activity, which lasted about ninety years. What we can now see is that the Atlantic Ocean would like to – or possibly even prefer to – dance alone. However, under certain circumstances, the external forces interrupt the ocean’s own rhythm and take over the lead, which has been the case during the last 250 years,” says Associate Professor Bo Holm Jacobsen, Department of Geoscience, Aarhus University, who is the co-author of the article. “It’ll be interesting to see how long the Atlantic Ocean allows itself to be led in this dance. The scientific challenge partly lies in understanding the overall conditions under which the AMO phenomenon is sensitive to fluctuations in solar activity and volcanic eruptions,” he continues. “During the last century, the AMO has had a strong bearing on significant weather phenomena such as hurricane frequency and droughts – with considerable economic and human consequences. A better understanding of this phenomenon is therefore an important step for efforts to deal with and mitigate the impact of climate variations,” Associate Professor Knudsen concludes.